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Statistial Mehanis of Steiner treesM. Bayati,1 C. Borgs,1 A. Braunstein,2 J. Chayes,1 A. Ramezanpour,3 and R. Zehina21Mirosoft Researh, One Mirosoft Way, 98052 Redmond, WA2Politenio di Torino, Corso Dua degli Abruzzi 24, 10129 Torino, Italy3ICTP, Strada Costiera 11, I-34100 Trieste, ItalyThe Minimum Weight Steiner Tree (MST) is an important ombinatorial optimization problemover networks that has appliations in a wide range of �elds. Here we disuss a general tehniqueto translate the imposed global onnetivity onstrain into many loal ones that an be analyzedwith avity equation tehniques. This approah leads to a new optimization algorithm for MST andallows to analyze the statistial mehanis properties of MST on random graphs of various types.Given a graph or a lattie, �nding a subgraph that opti-mizes some global ost funtion is an important problemin many �elds. One of the most basi versions of thisis known as the Minimum Weight Steiner Tree (MST)problem.Given an undireted graph with positive weights onthe edges, the MST problem onsists in �nding a on-neted subgraph of minimum weight that ontains a se-leted set of �terminal� verties. Suh onstrution mayrequire the inlusion of some nonterminal nodes whihare alled Steiner nodes. Clearly, an optimal sub-graphmust be a tree. Solving MST is a key omponent of manyoptimization problems involving real networks. Conreteexamples are network reonstrution in biology (phyloge-neti trees and regulatory sub-networks), Internet multi-asting, iruit design and power or water distributionnetworks design, just to mention few famous ones. MSTis also a beautiful mathematial problem in itself whihlies at the root of omputer siene being both NP-omplete [1℄ and di�ult to approximate [2℄. In physisthe Steiner tree problem has similarities with many basimodels suh as polymers, self avoiding walks or transportnetworks (e.g. [3℄) with a non-trivial interplay betweenloal an global frustration.Here we show that the avity approah of statistialphysis an be used to both analyze and solve this prob-lem on random graphs (as e.g. [4, 5, 6℄) one an ap-propriate representation is hosen. We atually studythe even more general (and eventually harder) D−MSTproblem in whih we onsider the depth of the tree froma root terminal node to be bounded by D. Unfortu-nately the traditional tehniques for studying topologi-ally onneted strutures, as for instane the so-alled
O(n) model, are inompatible with the avity method.We provide here instead an arboresent representation ofthe Steiner problem whih allows to implement expliitlyglobal onnetivity onstraints in terms of loal ones.In reent years many algorithmi results have appearedshowing the e�ay of the avity approah for optimiza-tion and inferene problems de�ned over both sparse anddense random networks of onstraints [4, 5, 6, 7, 8, 9℄.These performanes are understood in terms of fatoriza-tion properties of the Gibbs measure over ground states,

whih an be also seen as the onset of orrelation deayalong the iterations of the avity equations [10℄. Here wemake a step further by presenting evidene for the exat-ness of the avity approah for a qualitatively di�erentlass of models, namely problems whih are subjet torigid global onstraints that ouple all variables. Quiteoften this type of global onstraint is of topologial originand is ommon to many problems aross disiplines (e.g.the Traveling Salesman Problem in omputer siene orSelf-Avioding Walks in physis).Our work addresses two questions: by analyzing thedistributional equations we provide the phase diagramsof the problem in the ontrol parameters α and D, where
αN is the number of terminals in a graph of N vertiesand D is the allowed depth of the tree from a randomlyhosen root. We ompute quantities like the behavior ofthe minimum ost as a funtion of D for a given fra-tion α of terminals, or the number of Steiner nodes cNswhere both c and the exponent s depend on D and α.Suh quantities are of extreme interest in that they arediretly onneted with the topology of the tree. Forinstane, for the ase of omplete graphs with randomweights we �nd that an extremely small depth DN is suf-�ient for reahing osts whih are lose to optimal onesfor the unbounded trees (e.g. for the omplete graphwith random weights we �nd that DN ∼ log logN issu�ient to reah asymptotially a ost lose to the op-timal one ζ(3) [11, 12℄ of the minimum spanning treewhih has depth Θ(N1/3) [13℄). For �nite D the resultsof the avity approah an be ompared with rigorousupper and lower bounds [18℄ making us onjeture thatthe avity approah is exat, as it happens for randomMathings [14℄. Similar results hold for other lasses ofrandom graphs. Here we give results for �xed degree andSale-Free graphs, for whih some non trivial patterns ofsolutions for optimal Steiner trees appear.On the algorithmi side, the arboresent representa-tion of the problem leads to avity equations that an beturned into an algorithm for solving single instanes.Very few results are known on the Steiner problem onrandom graphs in the regime in whih α is �nite. For theomplete graph with random weights some upper andlower bounds for the minimum ost have been derived
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2[15℄, whih are ompatible with those predited by theavity method. For �nite degree random graphs (e.g.Erdös-Rényi, �xed degree or sale-free graphs) muh lessis known.The model. We model the Steiner tree problem as arooted tree (suh a onstrution is often assoiated withthe term �arboresene�). Eah node i is endowed with apair of variables (pi, di), a pointer pi to some other nodein the neighborhood V (i) of i and a depth di ∈ {1, . . . , D}de�ned as the distane from the root. Terminal nodesmust point to some other node in the �nal tree and hene
pi ∈ V(i). The root node onventionally points to itself .Non-root nodes either point to some other node in V(i)if they are part of the tree (Steiner and terminal nodes)or just do not point to any node if they are not part ofthe tree (allowed only for non-terminals), a fat that werepresent by allowing for an extra state for the pointer
pi ∈ V (i)∪∅. The depth of the root is set to zero, di = 0while for the other nodes in the tree the depths measurethe distane from the root along the unique oriented pathfrom the node to the rootIn order to impose the global onnetivity onstraintfor the tree we need to impose the ondition that if pi = jthen pj 6= ∅ and dj = di − 1. This ondition forbidsloops and guarantees that the pointers desribe a tree.In building the avity equations (or the Belief Propaga-tion equations), we need to introdue the harateristifuntions fij whih impose suh onstraints over on�gu-rations of the independent variables (pi, di). For any edge
(i, j) we have the indiator funtion fij = gijgji where
gjk =

(

1 − δpk,j

(

1 − δdj,dk−1

)) (

1 − δpk,jδpj ,∅

).Cavity Equations. The avity equations take the form
Pj→i (dj , pj) ∝ e−βcjpj

∏

k∈j\i

Qk→j (dj , pj) (1)
Qk→j (dj , pj) ∝

∑

dkpk

Pk→j (dk, pk) fjk (dk, pk, dj , pj) (2)where cij is the weight of the link (i, j), with ci∅ = ∞if i is a terminal. The ∝ symbol aounts for a mul-tipliative normalization onstant. Allowed on�gura-tions are weighted by e−βcij where β−1 is a temperature�xing the energy level. The zero temperature limit istaken by onsidering the following hange of variables:
ψj→i (dj , pj) = β−1 logPj→i (dj , pj) and φk→j (dj , pj) =
β−1 logQk→j (dj , pj). In the β → ∞ limit Eq. 1-2 redueto:
ψj→i (dj , pj) = − cjpj

+
∑

k∈j\i

φk→j (dj , pj) (3)
φk→j (dj , pj) = max

dk,pk:fjk(dk,pk,dj,pj) 6=0
ψk→j (dk, pk) (4)The previous two equalities must be understood tohold exept for an additive onstant. Eqs. 3-4 are inthe so alled "Max Sum" form.

On a �xed point, one an ompute marginals ψj :
ψj (dj , pj) = −cjpj

+
∑

k∈j

φk→j(dj , pj) (5)and the optimum tree should be given by arg maxψj .If the starting graph is a tree ψj→i(dj , pj) an be inter-preted as the minimum ost hange of removing a vertex
j with fored on�guration dj , pj from the subgraph withlink (i, j) already removed. We introdue the variables
Ad

k→j ≡ maxpk 6=j,∅ ψk→j (d, pk), Bd
k→j ≡ ψk→j (d, ∅),

Cd
k→j ≡ ψk→j (d, j), Dk→j = maxd max{Ad

k→j , B
d
k→j}and Ed

k→j = max{Cd+1
k→j , Dk→j}. This is enough to om-pute φk→j (dj , pj) = A

dj−1
k→j , Dk→j , E

dj

k→j for pj = k,
pj = ∅ and pj 6= k, ∅ respetively. Eqs. 3-4 an thenbe solved by repeated iteration of the following set ofequations:

Ad
j→i(t+ 1) =

∑

k∈j\i

Ed
k→j(t) + (6)

+ max
k∈j\i

{Ad−1
k→j(t) − Ed

k→j(t) − cjk}

Bj→i(t+ 1) = −cj∅ +
∑

k∈j\i

Dk→j(t) (7)
Cd

j→i(t+ 1) = −cij +
∑

k∈j\i

Ed
k→j(t) (8)

Dj→i(t) = max

(

max
d

Ad
j→i (t) , Bj→i (t)

) (9)
Ed

j→i(t) = max
(

Cd+1
j→i (t) , Dj→i (t)

) (10)For graphs without yles the above equations areguaranteed to onverge to the optimal solution. In graphswith yles, these equations may instead fail to onvergein some ases. For the lasses of random graphs stud-ied in this work, this appears not to be due to a repliasymmetry breaking instability but rather to the e�et ofloal strutures in the underlying graph (as it is known tohappen in simpler problems suh as random mathings[16℄). This observation is orroborated by the analysis ofthe distributional avity equations disussed later. Whilemore work is needed to understand this point, from thealgorithmi viewpoint the problem an be overome byapplying a small perturbation [6℄. The term ψj(dj , pj)of Eq. 5 multiplied by a (small) onstant ρ is added tothe rhs. of Eq. 3. This leads to a set of equations whihshow good onvergene properties for vanishing ρ.An equivalent formulation of the problem an be on-struted by introduing a link representation of thepointer variables (one may introdue link variables xij =
0,±1, 0 if i does not point j, 1 if i points j and −1 if jpoints i). In this representation, the number of states ofthe independent variables is just 3D whih an be kept�nite for omplete graphs or at most of order logN forsparse graphs.



3Distributional equations and average ase analysis.Population dynamis (or density evolution) is a power-ful tool to solve distributional equations that deal witha large number of random variables. In the physis om-munity the method was introdued in [17℄ for the study ofspin glass models on diluted random graphs. Populationdynamis is useful espeially when the equations involvesums over many states of the variables. The underly-ing idea is to represent probability distributions with apopulation of random variables and use the equations toupdate suh populations. After a suitably large numberof updates the histogram of variables in the populationwill onverge to a stable distribution.To obtain results on the N → ∞ limit one would needto resale simultaneously all d-dependent quantities in or-der to eliminate their diret dependene on N in Eqs. 6-10. We limited however ourselves here for all ases an-alyzed to large but �nite N , in partiular beause theobviously needed dependene of D on N for �nite degreegraphs makes this task even more involved.We will apply the population dynamis method to �ndthe statistial properties of the avity �elds Mi→j =
(

Ad
i→j , Bi→j , C

d
i→j , Di→j , E

d
i→j

) in Eqs. 6-10. Given anensemble of random graphs we will �nd the probabil-ity distribution of these �elds from whih we will derivethe quantities of interest, namely the average minimumost and average number of Steiner nodes as a fun-tion of N , in the so alled Bethe approximation whihis impliit in the avity approah. The method pro-eeds by initializing at random a population of �eld ve-tors Ma =
(

Ad
a, Ba, C

d
a , Da, E

d
a

) with a ∈ [0, Np] and
d ∈ [0, D]. The �rst member M0 represents messagessent by root. Members with label a = 1, . . . , Nt repre-sent messages sent by terminal nodes. Here Nt = αNpwhere α = K/N is the fration of terminal nodes. Thenthe population dynamis algorithm works by updatingthe population using Eqs. 6-10 until onvergene isreahed. For brevity, we omit the details of this pro-edure. One onvergene is reahed, marginals ψa (d, p)an be omputed using Eq. 5. The state (d∗, p∗) thatmaximizes the loal marginal gives the energy ontribu-tion of the a − th member. If p∗ 6= ∅ and Nt < a, then
a is a Steiner member. Finally the minimum ost reads
E = Ket + (N −K) es where et and es are the averageenergy of terminal and Steiner members. The fration ofSteiner members in the population will give the frationof Steiner nodes in the ensemble of random graphs.In Figures 1-3 we display numerial results for threelasses of random graphs, namely omplete graphs, �-nite onnetivity random graphs and sale-free graphs.We �rst verify a quite remarkable agreement betweenthe output of the algorithm whih �nds Steiner trees ongiven random instanes with the outomes of the popu-lation dynamis averaged over the randomness. In Figs1-2, we estimate the dependene on the depth D of theminimum ost and of the size of the Steiner set nodes.
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D, ompatible with N1/(2D−1). This suggests that veryfew "hops" (∼ log logN) are indeed su�ient to reahoptimal osts. From a qualitative point of view we ob-serve a non trivial dependene on N and α of the size ofthe Steiner set. The size itself turns out to be sublinear,with a rational exponent that depends on D. For �xed Nthere appears a maximum for relatively small values of
α. For the Sale-Free graphs there appears an additionaluspid-like minimum. Finally, in Fig. 3 we provide theprobability distribution of optimal weights for all lasses.We onlude this letter by mentioning the onnetionwith rigorous results. For the ase of bounded depthtrees on omplete graphs our numerial results show thatthe avity equations are indeed onsistent with knownbounds. As disussed in [18℄, the analysis of a simplegreedy algorithm and a Cherno�-type bound lead to up-per and lower bounds for the minimum ost that areable to identify the exat saling exponent and to givebounds for the pre-fators. More preisely, it an beshown that the average minimum ED grows with the sizeas N1/(2D−1) . The ase D = 2 and α = 1 is partiularlyeasy to understand: the greedy algorithm amounts athoosing a �rst set of N1 nodes at depth 1 by seletingthe N1 links with smallest weights. Suessively the re-maining N − N1 nodes at depth 2 are onneted to the�rst layer by hoosing the smallest weight for eah node.By optimizing over the size of N1 one �nds for the aver-age minimum ost E2 = 3

2N
1/3 (a naive guess may givean exponent 1/2 instead of 1/3). Comparisons with the



4
 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0  0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9  1

E
/N

α

FD, D=25
D=30
D=35
D=40

 0
 0.05
 0.1

 0.15
 0.2

 0.25
 0.3

 0.35
 0.4

 0.45
 0.5

 0  0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9  1

E
/N

α

SF, D=15
D=20
D=25

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0  0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9  1

S
/N

α

FD, D=25
D=30
D=35
D=40

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0  0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9  1

S
/N

α

SF, D=15
D=20
D=25Figure 2: Fixed degree (FD) and sale-free (SF) graphs. Left:Minimum ost as funtion of α for di�erent values of D.Right: Fration of Steiner nodes as a funtion of α. TheFD graphs have degree C = 3 and size N = 106. The SFgraphs have exponent γ = 3 and size N = 104.

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 1e-04  0.001  0.01  0.1

P
(w

)

w

D=2
D=3
D=4
D=5

 0
 0.005
 0.01

 0.015
 0.02

 0.025
 0.03

 0.035

 0.1  1

FD
SF

Figure 3: Weight distribution of the MST for omplete graphsof size N = 8000 at α = 0.5. Inset: For FD graphs of degree
C = 3 (N = 106) and SF graphs of exponent γ = 3 (N = 104)with parameters D = 25, α = 0.5.avity approah for small D show that indeed the ex-ponent is 1/

(

2D − 1
) as it should and that there exista onstant additional (negative) term to the minimumost whih improves over the greedy algorithm. Table Ishows the results of a power law �t to our data for theaverage minimum ost and number of Steiner nodes asa funtion of N . For D = N − 1 and α = 1 it is possi-ble to prove using tehniques based on the omputationtree that if the BP equations onverge, then the result isoptimal. Details about these results and hopefully abouttheir extensions to the α < 1 ase will be given elsewhere.

Work is in progress to apply the algorithmi sheme wehave presented to lustering, network reonstrution andprotein pathways identi�ation problems.
D α a b c

E 2 0.5 −1.07 ± 0.07 0.92 ± 0.01 0.31 ± 0.01

S 2 0.5 −3.62 ± 0.13 0.35 ± 0.01 0.67 ± 0.01

E 3 0.5 −0.83 ± 0.05 1.21 ± 0.02 0.15 ± 0.03

S 3 0.5 0 0.14 ± 0.01 0.90 ± 0.01

E 2 1 −1.46 ± 0.25 1.47 ± 0.03(3/2) 0.35 ± 0.01(1/3)

E 3 1 −0.95 ± 0.05 1.75 ± 0.02 0.15 ± 0.02(1/7)Table I: Comparing the exponents and prefators for ompletegraphs. The parameters have been obtained by �tting data to
a + bxc. In all the data N ≤ 8000. Values in the parenthesisare known analytial results.
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